MPRI 2-7-2 — Proof assistants — ~sozeau/teaching/MPRI-2-7-2-270114.pdf

Structures in Coq

January 27th 2014

Matthieu Sozeau

Tir? project team

Inria Paris & PPS
matthieu.sozeau@inria.fr
WWW.pPpS.../ ~sozeau

mailto:matthieu.sozeau@inria.fr

Announcement

* Talk by Hendrik Tews, founder of FireEye, Inc.
tomorrow at 2pm.

» PhD defense of J. Cretin on the 30th, at 2.30pm, room
227C of P7. “Erasable coercions: a unified approach
to type systems”

Structures in Coq

Record Types

Mathematical Structures and Coercions
Type Classes and Canonical Structures
Monadic Programming with Type Classes
Interfaces and Implementations

Outline

R 1

Last ime: Inductive Types

Least Fixpoints ot Polynomial Functors.
Introduction and elimination

Guardedness and strict positivity condition
Dependent elimination and restricted eliminations
Examples: ordinals and W-type.

Questions?

1 O

Record Types

Record Types

Mathematical Structures and Coercions
Type Classes and Canonical Structures
Monadic Programming using Type Classes
Interfaces and Implementations

Record Types

Relenigd ReCA = Type). - s =
A e e e g R o g B O

Endietse RN = Tupe) = s ==
Buatd Rl o) e Cin e oo R

No indices, no recursion.

Projection 1s pattern-matching

inddettye R (A = Type) = s ==
SR o P R 5 e s, o B s O of W Bl f 3 P 2

Pefuniion - jebls = Tvpel e Riah) e
R [B S e] e
Mateh Wi R e B e R T R == S e hd .

Definitional Equality

By construction:

s EBlid S rec il — - tn) >BOnx =td

But no) law:

B0] R (1 o B PR R o R e

Only derivable for Leibniz equality.

Exercises (10min):

Define the sigma/dependent sum/ pair type as a record.
Prove the 1 rule (surjective pairing) for it.

Define Q as a record of two integers.

Define the equivalence of two rationals as a proposition.

Definition addition of two rationals and show that it respects the equivalence (on pairwise
equivalent arguments, it gives equivalent results).

Mathematcal Structures and
Coercions

Record Types

Mathematical Structures and Coercions
Type Classes and Canonical Structures
Monadic Programming using Type Classes
Interfaces and Implementations

O1 OO

Mathematcal Structures

Defining composite structures as first-class objects:
Recordimonoid = 1 carrier : Type: unit: =cahEicn:
G GakEler . =>-carrler > carrler;
A g A Tre o) e RO o U R eer—on e stned o
Generic programming for any monoid:
Definition monsquare (m : monoid)

X Ca R eI M) Ca R Pl e s = O P X,

Type and value dependency is essential to make this typecheck.

Mathematical Structures and Coercions
Exercise (10min)

* Define the interface of a monoid given partially
above, and the (0, +) and (1, *) monoids on N.

* Define a generic exponentiation operation a’n where
n : N and a is in a monoid.

e Show that the exponentiation of the unit is always
equal to the unit.

Coercions

Recordimonodd = {1 carrier i [Fype:
it CapCier: ik
Generic programming for any monoid:
Definition monsquare (m : monoid)
M 2 N =0 P e,
Coercion carrier : monoid >-> Sortclass.

The term m is coerced to a sort (its carrier) in the types.

Coercions

» Coercions are not displayed (by default, see Set Printing
Coercions)

e The actual core term is the same as before

» Coherence of coercions (only one path up to = between two
types) and decidability ensured by a syntactic check.

* Uses: types embedded in records, injections (i.e. from N to 7)),
modeling a subtyping relation...

DefiNItTIonZ of Rat (0 = Hat) = Z +=t ZpeS5 1.

Coercion Z_of _nat : nat >—> Z.

Mathematical Structures and Coercions
Exercice (10min)

Define the coercion from N to B, sending 0 to false

and everything else to the true constructor.

Define the converse coercion from B to N, giving

value 1 to true.

Show that B — N — B is the identity (pointwise)

Which one should be a coercion?

Redo the monoid exercise using a coercion for carrier

O1 B

Type Classes

Record Types

Mathematical Structures and Coercions
Type Classes and Canonical Structures
Monadic Programming using Type Classes
Interfaces and Implementations

Type Classes

Introduced in Haskell (Wadler & Blott, POPL'89) and in Isabelle (Nipkow
& Snelting, FPCA’91).

class Eg a where
(==) :: a » a - Bool
instance Eq Bool where

Xe ==y = 1f X then vy else not y

in :: Eq a = a » [a]l] - Bool
= = FEP=SkEalise

e el = e == ol boan i oaas

Type Classes

Parametrized instances
instance (Eq a) => Eq [a] where
[] == [1] =2 ille
T e] (AP P e AT ST P d i — VA

Super-classes

class Num a where

S R o s e

class (Num a) = Fractional a where

(=) r T a e oy ads

T'ype Classes in Coq

» Parametrized dependent records

Record Id (aq : 7)) (a1 Tp) :=
{f1:01; 5t dm}
%

Instances are just definitions of conclusion Id ¢,,.

» Custom implicit arguments of projections

£ :V{am 1}, {Id @i} — ¢

Elaboration example

AXx y . bool. egb x y
~+ { Implicit arguments }
Ax y 1 bool. @egb _ _ x y
~ { Typing }
Ax y 1 bool. @egb (74 : Type) (Peq : Eq 74) x y
~+ { Unification }
Ax y : bool. @eqgb bool (7., : Eq bool) x y
~+ { Proof search for Eq bool returns Eq_bool }
Ax y : bool. @egb bool Eq_bool x y

Type Classes

» Proof-search a la Prolog

* An elaboration (no kernel change) (Sozeau and Oury,
2008).

Inheritance

Class Monoid A:={ monop: A—->A— A; ...}
Class Group A := { grp_-mon :> Monoid A ; ... }

Substructures become subinstances:

Class Monoid A:={monop: A—-A—= A, ...}
Class Group A := { grp-mon : Monoid A ; ... }
Instance grp_mon {Group A} : Monoid A.
Definition foo ‘{Group A} (x : A) : A := monop x x.

Similar to the existing Structures based on coercive subtyping.

Example: numeric overloading

Class Num o :={ zero: a;one: a;plus: a - a — «a }.

Instance nat_num : Num nat :=
{ zero := 0%nat ; one := 1%nat ; plus := Peano.plus }.

Instance Z_num : Num Z :=
{ zero := 0%Z ; one := 1%Z ; plus := Zplus }.

Notation '0Q" := zero.
Notation "1" := one.
Infix "4" := plus.

Check (A x : nat, x + (1 + 0 + x)).
Check (A x: Z, x4+ (1 4+ 0+ x)).
(x Defaulting *)

Check (A x, x + 1).

Example: value-dependent classes

Class Reflexive {A} (R : relation A) =
refl : V x, R x x.

Instance eq_refl A : Reflexive (@eq A) := Q@refl_equal A.

Instance iff_refl : Reflexive iff.
Proof. red. tauto. (Jed.

GoalV P, P+ P.
Proof. apply refl. Qed.

Goal VA (x: A), x = x.
Proof. intros A ; apply refl. Qed.

Ltac refl := apply refl.

Lemma foo ‘{Reflexive nat R} : R 0 0.
Proof. intros. refl. Qed.

Example: reification

Inductive formula :=

cst : bool — formula

not : formula — formula

and : formula — formula — formula
or : formula — formula — formula
impl : formula — formula — formula.

Fixpoint interp f :=
match f with
cst b = if b then True else False
not b = — interp b
and a b = interp a A interp b
or a b = interp a Vv interp b
impl a b = interp a — interp b
end.

Example: reification

Class Reify (prop : Prop) :=
{ reification : formula ;
reify _correct : interp reification < prop }.

Check (@reification : V prop : Prop, Reify prop — formula).

Implicit Arguments reification [[Reify]].

Program Instance true_reif : Reify True :=
{ reification := cst true }.

Program Instance not_reif ‘(Rb : Reify b) : Reify (= b) :=
{ reification := not (reification b) }.

Example example_prop :=
reification ((True A — False) — — — False).

Check (refl_equal _ : example_prop =
impl (and (cst true) (not (cst false))) (not (not (cst false)))).

Exercise (30min)

Define a reifier for expressions in the monoid class, a
reflexive tactic for simplifying monoidal expressions
(unit laws), and an overloaded lemma to apply it.

Canonical Structures

Another way to use records to represent structures,
capable of doing much the same as type classes, but
based on unification instead of general proof search. At
the basis of the ssreflect plugin.

See Mahboubi and Tassi [ITP’13] for a gentle
introduction and comparison, and Ziliani et al
[ICFP’11] for the previous examples using both
representations.

Monadic Programming with

Type Classes

Record Types

Mathematical Structures and Coercions
Type Classes and Canonical Structures
Monadic Programming with Type Classes
Interfaces and Implementations

O1 d= OONES

Monadic programming: ML vs Haskell

type NatState a = nat - a x nat

return :: o -» NatState «

val counter : unit - nat
bind :: NatState a - (a - NatState

let counter = B) - NatState B

let x = ref 0 in el e N ERISEE RS R

e put :: nat - NatState ()

let x’ = !x in counter :: NatState nat

: counter = do x' <-— get;
NG e S g o R

O T e et)
return x’

CO LM e e e e e &

GOl s A= 2

Monad

In our setting, a monad will be defined as:

Record Monad (M : Type - Type) :=
e retilrna =Y AAY Ao M- A:
ERTe A e B S R B N B S s e | i
bind _assoc {A B f g} (m : M A)
Ol s ek =
bind I C U X A D e X)

ol aTe el EeaalvlE Al UEiiit m e ot [St e B o) i it

Monad Instances

Instances of the monad interface:
+ id (identity monad)
- option (partiality monad)

- list (“nondeterminism” monad, unit is
[x], bind is concat o map)

- continuations, “computation” ..

Exercises (+20min)

Define Monad as a type class with overloaded bind and return/unit operations

Define monadic multiplication “mult” of type M (M A) — M A for any monad. State and prove what is
its relation to the unit.

Define the identity instance.

Define the option instance (return is injection, bind propagates “errors” represented as None), there is a
corresponding “error” /“nothing” action to define. To prove the laws, you will need to use the axiom in
Coqg.Logic.FunctionalExtensionality.

Define the generic mapM operator for any monad (it processes the effects from left to right). Generalize
it to a foldM.

Optional: Using this, write a partial function turning an integer to a natural, and a function that takes a
list of integers and returns the sum of their positive numbers, if they’re all positive only.

Optional: Using the state monad, verify a tree labeling algorithm:

http:/ / www.pps.univ-paris-diderot.fr/ ~sozeau / teaching / Classes / Monad.v

http://www.pps.univ-paris-diderot.fr/~sozeau/teaching/Classes/Monad.v

Interfaces and Implementations:
Fibonacci

Record Types

Mathematical Structures and Coercions
Type Classes and Canonical Structures
Monadic Programming with Type Classes
Interfaces and Implementations

D L

Interfaces vs Implementations

Software engineering principle applied to proot
engineering:

Work with interfaces instead of implementations.
An illustrative example:

Veritying a fast implementation of Fibonacci.

A correct exponentiation algorithm

The following definition is very naive, but obviously correct:

Fixpoint power (a: Z) (n: nat) :=
match n with
| 0%nat = 1
|'S p = a x power a p
end.

Eval vm_compute in power 2 40.
= 1099511627776 : Z

An cfficient exponentation algorithm

This one is more efficient but relies on a more elaborate property:

Function binary_power_mult (acc x : Z) (n : nat)
{measure (fun i=i) n} : Z :=
match n with
| 0%nat = acc
| - = if Even.even_odd_dec n
then binary_power_mult acc (x X x) (div2 n)
else binary_power_mult (acc x x) (x x x) (div2 n)
end.

Definition binary_power (x:Z) (n:nat) :=
binary_power_mult 1 x n.

Eval vm_compute in binary_power 2 40.
= 1099511627776 : Z

Goal binary_power 2 234 = power 2 234.
Proof. reflexivity. (ed.

How to proceed?

* Is binary_power correct (w.r.t. power)?

» Is it worth proving this correctness only for powers of
integers?

* And prove it again for powers of real numbers, matrices?

NO!

Program with interfaces, here a monoid.

Support for overloading

Quantification on parameters:

Definition two {A dot one} {M : ®@Monoid A dot one} :=
dot one one.

Using implicit generalization:
Generalizable Variables A dot one.

Definition three ‘{Monoid A dot one} := dot two one.

Global names for parameters:

Definition monop ‘{Monoid A dot one} := dot.
Definition monunit ‘{Monoid A dot one} := one.

Generic notations:

Infix " X" := monop.
Notation "1" := monunit.

A generic exponentiation algorithm

Generic power and binary_power.

Section Power.
Context ‘{Monoid A dot one}.

Fixpoint power (a: A) (n: nat) :=
match n with
| 0%nat = 1
'S p= a x (power a p)
end.

Lemma power_of_unit : V n : nat, power 1 n = 1.
Proof. ... Qed.

A generic, efficient exponentiation algorithm

Function binary_power_mult (acc x : A) (n : nat)
{measure (fun i=i) n} : A:=
match n with
| 0%nat = acc
| - = if Even.even_odd_dec n
then binary_power_mult acc (x x x) (div2 n)
else binary_power_mult (acc x x) (x x x) (div2 n)
end.
Definition binary_power (x : A) (n: nat) :=
binary_power_mult 1 x n.

Lemma binary_spec x n : power x n = binary_power x n.
Proof. ... Qed.

End Power.

Exercise (1h, for next week)

Get ~sozeau / teaching / MPRI-2-7-2-270114-Fibonacci.v

* Define the monoid instance for multiplication on Z

* Define a commutative semiring type class, comprising 2 monoids, one for multiplication and one for
addition and the additional laws (commutativity and one distributive law).

* Define an instance for Z (you can leave some obligations admitted).
* Define square 2x2 a-valued matrices, for a supporting a commutative semiring structure.
* Define the multiplicative and additive monoids on these matrices and the semiring structure.

 Using the characterization of the Fibonacci sequence below, define Fibonacci in terms of exponentiation
of matrices.

 Show that this fast version is equivalent to the naive definition of Fibonacci.

« Experiment with vim_compute and compute on these different implementations (using power, binary
power)...

—

11" _[Fn+1) F(n)
1 of | Fm Fn-1|

