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Today

In this class, we shall present how Coq allows us in practice to
define data types using (co-)inductive declarations, compute on
these datatypes, and reason by induction.



Inductive declarations

An arbitrary type as assumed by:

Variable T : Type.

gives no a priori information on the nature, the number, or the
properties of its inhabitants.



Inductive declarations

An inductive type declaration explains how the inhabitants of the
type are built, by giving names to each construction rule:

Print bool.
Inductive bool : Set := true : bool | false : bool.

Print nat.
Inductive nat : Set := O : nat | S : nat -> nat.

Each such rule is called a constructor.
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Enumerated types

Enumerated types are types which list and name exhaustively their
inhabitants.

Inductive bool : Set := true : bool | false : bool.

Inductive color:Type :=
| white | black | yellow | cyan | magenta
| red | blue | green.

Check cyan.
cyan : color

Labels refer to distinct elements.
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Enumerated types: program by case analysis

Inspect the enumerated type inhabitants and assign values:

Definition my_negb (b : bool) :=
match b with true => false | false => true.

Definition is_black_or_white (x : color) : bool :=
match x with
| black => true
| white => true
| _ => false
end.

Compute: constructors are values.

Eval compute in (is_black_or_white hat).
= false
: bool
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Enumerated types: reason by case analysis

Inspect the enumerated type inhabitants and build proofs:

Lemma bool_case : forall b : bool, b = true \/ b = false.
Proof.
intro b.
case b.

left; reflexivity.
right; reflexivity.
Qed.



Enumerated types: reason by case analysis

Inspect the enumerated type inhabitants and build proofs:

Lemma is_black_or_whiteP : forall x : color,
is_black_or_white x = true ->
x = black \/ x = white.

Proof.
(* Case analysis + computation *)
intro x; case x; simpl; intro e.
(* In the three first cases: e: false = true *)

discriminate e.
discriminate e.
discriminate e.

(* Now: e: true = true *)
left; reflexivity.
right; reflexivity.

Qed.



Enumerated types: reason by case analysis

Two important tactics, not specific to enumerated types:

I simpl: makes computation progress (pattern matching applied
to a term starting with a constructor)

I discriminate: allows to use the fact that constructors are
distincts:

I discriminate H: closes a goal featuring a hypothesis H like
(H : true = false);

I discriminate: closes a goal like (O <> S n).



Options and partial functions

Function f : A→ B defined on only a subdomain D of A.
I Return a default value in B for x 6∈ D

Arbitrary if B is a variable : head of list
I Modify the return type: option B .

Inductive option:Type :=
Some : B -> option | None : option.

I The program tests whether the input is inside the domain
I Similar to exceptions
I ∀x ,D x ⇒ g x = Some (f x).

I Extra argument of domain: ∀x , x ∈ D → B
I Argument erased by extraction: D : A→ Prop.
I Proof irrelevance : f x d1 = f x d2



Recursive types

Let us craft new inductive types:

Inductive natBinTree : Set :=

| Leaf : nat -> natBinTree
| Node : nat -> natBinTree -> natBinTree -> natBinTree.

Inductive term : Set :=
|Zero : term
|One : term
|Plus : term -> term -> term
|Mult : term -> term -> term.

An inhabitant of a recursive type is built from a finite number of
constructor applications.
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Recursive types: program by case analysis

We have already seen some examples of such pattern matching:

Definition isNotTwo x :=
match x with
| S (S O) => false
| _ => true

end.

Definition is_single_nBT (t : natBinTree) :=
match t with
|Leaf _ => true
|_ => false
end.
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Recursive types: proofs by case analysis

Lemma is_single_nBTP : forall t,
is_single_nBT t = true -> exists n : nat, t = Leaf n.

Proof.

(* We use the possibility to destruct the tree
while introducing *)

intros [ nleaf | nnode t1 t2] h.
(* First case: we use the available label *)

exists nleaf.
reflexivity.

(* Second case: the test evaluates to false *)
simpl in h.
discriminate.
Qed.
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Recursive types

Constructors are injective:

Lemma inj_leaf : forall x y, Leaf x = Leaf y -> x = y.
Proof.
intros x y hLxLy.
injection hLxLy.
trivial.

Qed.



Recursive types: structural induction

Let us go back to the definition of natural numbers:

Inductive nat : Set := O : nat | S : nat -> nat.

The Inductive keyword means that at definition time, this system
geneates an induction principle:

nat_ind
: forall P : nat -> Prop,

P 0 ->
(forall n : nat, P n -> P (S n)) ->
forall n : nat, P n
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Recursive types: structural induction

To prove that for P : term -> Prop, the theorem forall t :
term, P t holds, it is sufficient to:

I Prove that the property holds for the base cases:
I (P Zero)
I (P One)

I Prove that the property is transmitted inductively:
I forall t1 t2 : term,

P t1 -> P t2 -> P (Plus t1 t2)
I forall t1 t2 : term,

P t1 -> P t2 -> P (Mult t1 t2)

The type term is the smallest type containing Zero and One, and
closed under Plus and Mult.
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Recursive types: structural induction

The induction principles generated at definition time by the system
allow to:

I Program by recursion (Fixpoint)
I Prove by induction (induction)



Recursive types: program by structural induction

We can compute some information on the size of a term:

Fixpoint height (t : natBinTree) : nat :=
match t with

|Leaf _ => 0
|Node _ t1 t2 => Max.max (height t1) (height t2) + 1

end.

Fixpoint size (t : natBinTree) : nat :=
match t with
|Leaf _ => 1
|Node _ t1 t2 => (size t1) + (size t2) + 1
end.
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Recursive types: program by structural induction

We can access some information contained in a term:

Require Import List.
Fixpoint label_at_occ (dflt : nat)

(t : natBinTree)(u : list bool) :=
match u, t with
|nil, _ =>

(match t with Leaf n => n | Node n _ _ => n end)
|b :: tl, t =>

match t with
|Leaf _ => dflt
| Node _ t1 t2 =>

if b then label_at_occ dflt t2 tl
else label_at_occ dflt t1 tl

end
end.



Recursive types: proofs by structural induction

We have already seen induction at work on nats and lists.
Here its goes on binary trees:

Lemma le_height_size : forall t : natBinTree,
height t <= size t.

Proof.
induction t; simpl.

auto.
apply plus_le_compat_r.
apply max_case.

apply (le_trans _ _ _ IHt1).
apply le_plus_l.
apply (le_trans _ _ _ IHt2).
apply le_plus_r.

Qed.



Structure of the definition of a recursive function

Inductive btree : Type := Leaf : btree
| Node : btree -> btree -> btree.

Fixpoint get_subtree
(l:list bool) (t:btree) {struct t} : btree :=

match t, l with
| Empty, _ => Empty
| Node _ _, nil => t
| Node tl tr, b :: l’ =>

if b then get_subtree l’ tl else get_subtree l’ tr
end.

I Note the recursive calls made on tl and tr.
I The recursive call should be done on a strict sub-term of the

argument.
I This ensures the termination of recursive functions



Termination

The termination of recursive functions is one of the component
which ensures the logical consistency of Coq.

We have to live with this . . .

And we have to convince the system that all the functions we write
are terminating.
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An example of recursive function: fact

Recursive call should be made on strict sub-term:

Fixpoint fact n :=
match n with
| O => 1
| S n’ => n * fact n’
end.

Definition fact’ :=
fix fact1 n :=

match n with
| O => 1
| S n’ => n * fact1 n’
end.



An example of recursive function: div2

Recursive call can be done on not immediate sub-terms:

Fixpoint div2 n :=
match n with
| S (S n’) => S (div2 n’)
| _ => 0
end.

A sub-term of strict sub-term is a strict sub-term



More general recursive calls

I It is possible to have recursive calls on results of functions.
I All cases must return a strict sub-term.
I Strict sub-terms may be obtained by applying functions on

strict sub-terms.
I This functions should only return sub-terms of their arguments.

(not necessarily strict ones).
I The system checks by looking at all cases.



Example of function that returns a sub-term

Definition pred (n : nat) :=
match n with
| O => n
| S p => p
end.

I In the O branch, the value is n, a (non-strict) sub-term of n.
I In the S p branch, the value is n a (strict) sub-term of n.



Recursive function using pred

Fixpoint div2’ (n : nat) :=
match n with

O => n
| S p => S (div2’ (pred p))
end.

The same trick can be played with minus which returns a sub-term
of its first argument, to define euclidian division.



Mutual recursion

It is possible to define function by mutual recursion:

Fixpoint even n :=
match n with
| O => true
| S n’ => odd n’
end

with odd n :=
match n with
| O => false
| S n’ => even n’
end.



Lexicographic order

Sometimes termination functions is ensured by a lexicographic order
on arguments. In Ocaml we can program:

let rec merge l1 l2 =
match l1, l2 with
| [], _ -> l2
| _, [] -> l1
| x1::l1’, x2::l2’ ->

if x1 <= x2 then
x1 :: merge l1’ l2

else
x2 :: merge l1 l2’;;

There are two recursive calls merge l1’ l2 and merge l1 l2’.
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Solution in Coq: internal recursion
Coq also makes it possible to describe anonymous recursive function
Sometimes necessary to use them for difficult recursion patterns

Fixpoint merge (l1 l2:list nat) : list nat :=
match l1, l2 with
| nil, _ => l2 | _, nil => l1
| x1::l1’, x2::l2’ =>

if leb x1 x2 then x1::merge l1’ l2
else

x2 :: (fix merge_aux (l2:list nat) :=
match l2 with
| nil => l1
| x2::l2’ =>

if leb x1 x2 then x1::merge l1’ l2
else x2:: merge_aux l2’

end) l2’
end.



The style is not very readable (use the Section instead)



Another solution (Hugo Herbelin)

Fixpoint merge l1 l2 :=
let fix merge_aux l2 :=
match l1, l2 with
| nil, _ => l2
| _, nil => l1
| x1::l1’, x2::l2’ =>

if leb x1 x2 then x1::merge l1’ l2
else x2::merge_aux l2’

end
in merge_aux l2.

Compute merge (2::3::5::7::nil) (3::4::10::nil).
= 2 :: 3 :: 3 :: 4 :: 5 :: 7 :: 10 :: nil

: list nat



More general recursion

I Constraints of structural recursion may be too cumbersome.
I Sometimes a measure decreases, which cannot be expressed by

structural recursion.
I The general solution provided by well-founded recursion.
I An intermediate solution provided by the command Function.



Example using Function: fact on Z

Integers have a more complex structure than natural numbers

Inductive positive : Set :=
| xH : positive (* encoding of 1 *)
| xO : positive -> positive (* encoding of 2*p *)
| xI : positive -> positive. (* encoding of 2*p+1 *)

Inductive Z : Set :=
| Z0: Z | Zpos: positive -> Z | Zneg: positive -> Z.

I This type makes computation more efficient.
I x − 1 is not a structural sub-term of x .
I For instance 3 is Zpos (xI xH) and 2 is Zpos (xO xH).



Example using Function: fact on Z

Require Import Recdef.

Function factZ (x : Z) {measure Zabs_nat x} :=
if Zle_bool x 0 then 1 else x * fact (x - 1).

1 subgoal
============================
forall x : Z, Zle_bool x 0 = false ->
(Zabs_nat (x - 1) < Zabs_nat x)%nat

Now, we prove explicitely that the measure decreases.



Merge again
Definition slen (p:list nat * list nat) :=

length (fst p) + length (snd p).

Function Merge (p:list nat * list nat)
{ measure slen p } : list nat :=

match p with
| (nil, l2) => l2
| (l1, nil) => l1
| ((x1::l1’) as l1, (x2::l2’) as l2) =>

if leb x1 x2 then x1::Merge (l1’,l2)
else x2::Merge (l1,l2’)

end.
(* Two goals *)
...
Defined.

Compute Merge (2::3::5::7::nil, 3::4::10::nil).



Well-founded Relations

Dotted lines represent any number of elementary relationships



Minimal elements are accessible



Elements whose all predecessors are accessible become accessible



. . .



Some time later . . .







Well founded relations in Coq

How to encode well founded relations in Coq? By crafting the type
of trees with no infinite branch.

Let’s try.



Well founded relations in Coq

A type for binary trees:

Inductive btree : Type :=
| Leaf : btree
| Node : btree -> btree -> btree.

A type for finitly branching trees:

Inductive ntree : Type :=
| Leaf : ntree
| Node : (list ntree) -> ntree.

A type for countably branching trees:

Inductive itree : Type :=
| Leaf : itree
| Node : (nat -> itree) -> itree.
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Well founded relations in Coq

A relation is well founded if all elements are accessible.

Inductive Acc (A : Type) (R : A->A->Prop) (x:A) : Prop :=
Acc_intro :

(forall y : A, R y x -> Acc R y) -> Acc R x.

Definition well_founded (A:Type) (R:A->A->Prop) :=
forall a, Acc R a.

It is possible to define functions by recursion on the accessibility
proof of an element (Function, Program are based on this).



Proving that some relation is well-founded

Coq’s Standard Library provides us with some useful examples of
well-founded relations :

I The predicate lt over nat (but you can use measure instead)
I The predicate Zwf c , which is the restriction of < to the

interval [c ,∞[ of Z.
Libraries Relations, Wellfounded contains (dependent) cartesian
product, transitive closure, lexicographic product and
exponentiation.



More examples: log10

Function log10 (n : Z) {wf (Zwf 1) n} : Z :=
if Zlt_bool n 10 then 0 else 1 + log10 (n / 10).

Proof.
(* first goal *)
intros n Hleb.
unfold Zwf.
generalize (Zlt_cases n 10) (Z_div_lt n 10);rewrite Hleb.
omega.
(* Second goal *)
apply Zwf_well_founded.

Defined.
(* Compute log10 2. : and wait (for a long time) ... *)



log10 can also be defined using measure

Function log10 (n : Z) {measure Zabs_nat n} : Z :=
if Zlt_bool n 10 then 0 else 1 + log10 (n / 10).

Proof.
(* first goal *)
intros n Hleb.
unfold Zwf;generalize (Zlt_cases n 10); rewrite Hleb;intros Hle.
apply Zabs_nat_lt.
split.
apply Z_div_pos;omega.
apply Zdiv_lt_upper_bound;omega.

Defined.



Generating one’s own induction principle

Sometime, the generated induction principle is not usable.

Inductive tree (A:Type) :=
| Node : A -> list (tree A) -> tree A.

Check tree_ind.

tree_ind
: forall (A : Type) (P : tree A -> Prop),

(forall (a : A) (l : list (tree A)), P (Node A a l)) ->
forall t : tree A, P t



Generating one’s own induction principle

my_tree_ind : forall (A : Type)
(P : tree A -> Prop) (Pl : list (tree A) -> Prop),
(forall a l, Pl l -> P (Node _ a l)) ->
Pl nil ->
(forall t l, P t -> Pl l -> Pl (t :: l)) ->
forall t, P t

This is a good exercise...



Principles of coinductive definitions

I Type (or family of types) defined by its constructors
I Values (closed normal term) begins with a constructor

Construction by pattern-matching (match . . . with . . . end)
I Biggest fixpoint νX .F X : infinite objects

I Co-iteration: ∀X , (X ⊆ FX )→ X ⊆ νX .F X
I Co-recursion: ∀X , (X ⊆ F (X + νX .FX ))→ X ⊆ νX .FX
I Co-fixpoint: f := H(f ) : νX .FX

Recursive calls on f are guarded by the constructors of νX .FX .



Example: streams

Variable A : Type.

CoInductive Stream : Type :=
Cons : A -> Stream -> Stream.

Definition hd (s:Stream) : A
:= match s with Cons a _ => a end.

Definition tl (s:Stream) : Stream
:= match s with Cons a t => t end.



Example: streams
Variable A : Type.

CoInductive Stream : Type :=
Cons : A -> Stream -> Stream.

CoFixpoint cte (a:A) := Cons a (cte a).

Lemma cte_hd : forall a, hd (cte a) = a.
Proof. trivial. Qed.

Lemma cte_tl : forall a, tl (cte a) = cte a.
Proof. trivial. Qed.

Lemma cte_eq : forall a, cte a = Cons a (cte a).
Proof.
intros.
transitivity (Cons (hd (cte a)) (tl (cte a)));
trivial.
now case (cte a); auto.

Qed.



Functions should also be guarded

Filter on stream

Variable p:A->bool.
CoFixpoint filter (s:Stream) : Stream :=

if p (hd s) then Cons (hd s) (filter (tl s))
else filter (tl s)

Might introduce a closed term of type Stream which does not
reduce to a constructor.



Coinductive family

Notion of infinite proof:

CoFixpoint cte2 (a:A) := Cons a (Cons a (cte2 a)).

How to prove cte a = cte2 a ?
Definition of an extentional (bisimulation) equality predicate:

CoInductive eqS (s t:Stream) : Prop :=
eqS_intros : hd s = hd t -> eqS (tl s) (tl t)

-> eqS s t.

Proof

CoFixpoint cte_p1 a : eqS (cte a) (cte2 a) :=
eqS_intro (refl a) (cte_p2 a)

with cte_p2 a : eqS (cte a) (Cons a (cte2 a)) :=
eqS_intro (refl a) (cte_p1 a).



A CS example

The computation monad (Megacz – PLPV’07, . . . ):

CoInductive comp (A : Type) :=
| Done (a : A) : comp A
| Step (c : comp A) : comp A

One Step is one “tick” of a computation.
Exercise: Show it is a monad, with special action:

eval : forall A, comp A -> nat -> option A

What’s the right notion of equality on computations?
Write the Collatz function using this monad:
http://en.wikipedia.org/wiki/Collatz_conjecture.

http://en.wikipedia.org/wiki/Collatz_conjecture
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